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Effective transfer rates for a dissipative two-level system driven by regular and stochastic fields
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The transfer processes in a two-level system coupled to a thermal bath and driven by strong regular and
stochastic fields are studied. Starting with the master equation for a dissipative quantum system, the derivation
of respective kinetic equations and effective transfer rates is demonstrated. For the low-temperature limit and
the case of a large value of the reorganization energy of the environment it is shown that the action of a strong
periodic field can invert the transfer process or block it completely. Applying an additional stochastic field, a
weakening of this transfer blocking is obtain¢81063-651X96)50511-§

PACS numbsgs): 02.50.Ey, 02.50.Wp, 05.20.Dd, 05.60w

The dissipative two-level syste(iLS) represents a basic enceo,(t) =tr[p(t)a,] [p(t) is the reduced density matiix
model for the description of various transfer processes obwe restrict ourself to the Born approximation with respect to
served in crystals and molecular or biomolecular systemshe “dressed” internal coupling. Proceeding according to

Recently, considerable interest has been focused on the proggy former approachefs,7,11, we obtain the stochastic
lem how to control transitions in the TLS by strong time- %naster equation

dependent fields. Using the dissipative TLS in the notation o
the spin-boson problem and invoking the noninteracting blip _ t
approximation(NIBA) [1—8], it has been demonstrated that a o, (t)=— f V(OV()f(t,t)o,(t")dt’
fast oscillating field can change the transfer rates over orders 0
of magnitude[4,9—-11 and even can invert the transfer di- t
rection[10,11. A similar control may also be initiated by —f V() V(t)g(t,t")dt’. 2
stochastic fields as it could be shown[if. 0
In the present paper the combined action of an externathe quantities
regular and stochastic field on the transfer process in a TLS

will be studied. We start with the TLS Hamiltonian in the 4 ) )
standard notation of the spin-boson sysfdh ftt)= ﬁexp[—GS(t—t )]cog Ga(t—t")]
- N - 1 [t
H(t):%s(t)UZ'FV(t)O'X'F%O'Z; K)\(bl'f'b)\) XCO{%f s(T)dT),
t,
+>, fiwy(biby+3), 1 L4 e ,
2 hn(dby ) @ 9(tt))= 72exi] —~ Gy(t—t')Jsi G,(t—t')]

whereb, (b}:) is the boson annihilatiofcreatior) operator
of the heat bath(HB) mode A with frequency w,, and
o,=|1{(1|—1]2)(2| and o,=]|1)(2|+|2){1| are the pseu-
dospin operators defmed. by _the TLS localized _Stdﬂ?)S define the regular part of the integral kernels contained in the
and |2). In Eq. (1), the time-independent quantity, is  aster equation. They include the contribution of the HB
the coupling to the HB, whereas the energy biasyng he regular field. The functig®(t) = Gy(t) +iGa(t) [1]

2(t)= El(.t)._Ez.(t) and the tunneling coupliny(t) depend  5.cunts for the influence of the HB and can be represented
on the driving field. To be more concrete we take

X sin|

1 (t
gftrs(r)dr), 3

as
e(t)=gg+nAcod)t, ¢ 4 E
. r
wheree, is the constant energy bias aAdand Q are the G(t)= fodtlfo K(tp)dt+i 27 @
amplitude and the frequency of the bias oscillations, respec- h
tively. The stochastic field should influence the TLS via theVNere
tunneling couplingV(t). We choose this quantity in such a 1 (= cosh A w/2kgT—i wt)
manner that it randomly switches between two vaMgand K(t)= 27 Jo dod(w) sinh( w/2KgT) ®)
V, with escape frequencies, and v,, respectivelythe di-
chotomous Markov proces®MP)]. is the autocorrelation function of the energy bias fluctuations

To generalize the approach that is based on the NIBA andaused by the HB. This function, as well as the bath reorga-
which yields a master equation for state population differ-nization energy

1063-651X/96/5¢6)/45004)/$10.00 54 R4500 © 1996 The American Physical Society



54 EFFECTIVE TRANSFER RATES FOR A DISSIPATE . . . R4501

K)2\ i (=d(o) and

E= < hoy 27 Jo do, © (V)=(Vira+Vory)/2v

are the root-mean-square deviation and the noise-averaged
internal coupling, respectively. Proceeding in such a way, we
get from Eq.(8) the completely averaged master equation

includes the spectral density of the bath

2
J(w)zﬁ—zg K)Z\é(w—wx). (7)

d t _
| - G0 == [ (v ofent - e TiE-t))
The main goal of the present study is to derive the master 0
equation for the difference of the state populatigos(t)) X (o, (t"))dt’
averaged with respect to realizations of the random tunneling z

coupling V(t) (which will be denoted by )) and averaged t _ ,

with respect to the oscillations of the periodic fiélddicated - f0{<v> +oyvexd —v(t—t'])}

by an overbar Similar master equations were derived earlier

either for the case of the periodic fie]d,8—17 or for the Xg(t—t")dt’. (10

case of the DMH6,7]. The generalization to the combined _ _ _

action of both types of external fields depends essentially oA his equation forms the desired basis for the study of aver-
the relation between the mean arithmetic escape frequendged transfer processes in a TLS. The contained memory
v=(v,+ v,)/2 of the DMP, the frequenc§ of the periodic ~ €ffects are of minor importance if the decay timgof these
coupling to the HB. Here we restrict ourselves to the rathefr- Then, on the time scalat~ 7> 4, the upper limit in
important frequency regiof> v~ 1 only. In this case, € integrals of Eq(10) can be replaced by and Eq.(10)

the first step of the averaging procedure is related to th&educes to the balance equations

averaging with respect to the fast oscillations of the periodic : __

field. In line with the treatment di4,6-9,11 we obtain P1()=~kiP1(D) TkoPa(D),

P,(t) = —kpP(t) + kPy(t)

d__ t — _
- tz—thVt’ft—t’ t")dt’ _
dtUZ() 0 OV Jo(t’) for the averaged populationB,(t)=[1+(o,(t))]/2 and

. P,(t)=[1—(o,(t))]/2. The forwardk; and backward,, ef-
_ f V(H)V(t')g(t—t")dt'. (g) fective transfer rates read
0

. < 2 A 77 27
The functions kf,bzn;m hlg (V) Fa=(0)+oyfna ()], (11

f_(t—t’)=%ex;{—Gs(t—t’)]cos{ea(t—t')] where

Toa(v)= h—zzReJ:dtexr[ —G(1) =i (Qo+n)t—2t]. (12

X 2 Jﬁ(g cod (Qo+nQ)(t—t")],

The expressior(11) of the rate constants enables us to
calculate the total effective transfer rate

_ 4 ) ,
glt—t') =z exi — Gy(t—t")]sin Gy(t—t")] Kk, kg
as well as the steady-state populations

» Al
X > Jﬁ<ﬁ) s (Qo+nQ)(t—t")] (9
n=-—o Pi,ZZ kb‘f/(kf“‘kb).
containQg=¢,/% and the Bessel functiod,(z) of the first |t is necessary to note that the ratio of the steady-state popu-
kind, which describes the influence of multiphoton processegations does not coincide with the conventional Boltzmann
on the transfer reaction. Sind&t) ando,(t) of Eq.(8) are  form exd—(so/kgT)] of thermal equilibrium obtained at a
random quantities, the noise averaging of E).has to be  small tunneling coupling. Both types of external fields drive
carried out in the next stefin the case of a symmetric DMP  the quantum system out of the thermal equilibrium. This ef-
the noise averaging is possible in an exact mannefect can be characterized by means of the effective energy
[6,7,12,13.) Below we apply the standard decoupling gap ey introduced via the expression

(VOV() o, (t)) =(V(DV(L) (o5(t")), P/P3=exp(—ee/ksT),

which is valid at small Kubo number&;=V;/vhA<1 which results in
[14,15. Furthermore, we can use the exact relation — kaTI
= n(k; /Kp).
(VO)V(1"))= odexp(—vt—t'|)+(V)?, where serr=KeTIN(k; ko)
) 0 h 2 For a further quantitative analysis of the transfer processes it
oy=v1va(Vi— Vo) 4 is necessary to specify the functi@(t) defined in Eq.(4)
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and, respectively, the spectral densiyw) [2,16,17. Here ~ where ® (x)=Rdw((x+iv)/y2A)]/\2wA. Here w(z)
we restrict ourselves to the model where the TLS is coupled= exp(—Z)erfc(—iz) denotes the error function of a com-
to a set of low-frequency modes and a single quantum modglex variable and erfa) is the complementary error func-

of the environment. Thus we have tion. At »= 0 and in the high-temperature limikgT
(@)= (@) +Iguanf @). >hwp, the line shape is Gaussian, i.ePq(x)
. o =exf — (AX)%4E kg T]/ V4 7E kg T and we obtain the result
The first contribution derived previously if4,9—11. The width of the line shape
2mE function is given by the low-frequency part of the HB spec-
Jpw)= h—rw@)(wD—w) (13) tral density and the stochastic fluctuations of the tunneling
il coupling. It is finite even atT=0, which reflects the

reflects the Ohmic form of the spectral density with anduantum-mechanical nature of the HB.u#0, ®,(x) has
abrupt cutoff at the Debye cutoff frequeney, [2]. O (X) is Lorentglan wings at Iarge<, and if u>A_, the Gaussian
the unit step function ang, denotes the part of the reorga- form is transformed into a Lorentzian formb,(x)

. . . _ 2 2 :
nization energy(6), which corresponds to the low-frequency = ¥/ (v +Xx°). Generally, we can state that stochastic fluc-
vibrations. The second contribution tuations result in a broadening of the line-shape function.

Let us concentrate on the low-temperature limit to have a
0 simple example for the alternation of transfer rates by exter-
Jquan(“’):75(“’_w0) (14 nal fields. Taking Egs(11) and (17) and carrying out the
limit T—0, one obtains the transfer rates

2

describes the strong couplirtgith coupling strengthc,) to

the specific high-frequency quantum mode of the environ- V2 s B S o A ) _
ment (or to an intramolecular reaction coordingteith fre-  Krp=72y€ p§=:O ol ‘Jn(ﬁ)[<v> Do(E, /1 +Qy
guencyw.

The analytical evaluation of the low-frequen@yF) part +pwg+ nQ)+cr\2,<I>V(Er/ﬁIQO+ pwy+nQ)], (18
of the spectral densityl3) is possible in the short-time ap-
proximation when which describe a pure tunneling process.
In a first step, let us consider the limit of low-frequency
K, o(t)~K, (0 ZAZZJ dwl coth 7 w/2kaT) /277 bias OSC_I||atI0r_1$ wher@<A. Inth|§ case one can replace the
(1) =Kr(0) 0o Le(w)cothtiiol2kgT)/2m summation with respect to the indexin Eq. (18) by an

(15 integration in considering as a continuous number. If one
further assumes thak,(A/Q) is a smooth function ofi in

Since the oscillatory decay & ((t) is exclusively defined the vicinity of the maximum of the line-shape function

by the Debye cutoff frequencyp, the justification of Eq.
(15) follows directly from the conditioMA>wp. The as- n.(p)=[*+Qo—pwo—E, /%]/Q,

ymptotic relationsA >~ 2E kg T/2? andA?~E, wp/2%, valid -

at high temperatureskgT>%wp) and low temperature one can factor oud, (,)(A/Q) from the integral. The re-
(keT<hwp), respectively, show clearly that the inequality maining integral yields 1} independentiypn A andv. As a
A>wp is definitely fulfilled in the case of a high reorgani- result, we get

zation energy wheik,>% wp . Such an inequality is typical

for molecular systems embedded in nonpolar media 2 * P ) A

and we may stress that the short-time approximation kf,b~m<vz>e_sz _|‘]n+(p)(6)! 19
(150 can be used at any temperature. To present an p=0 P> =

estimation we will take below E,=50 cmi! and

1 ) , where(V?)=(V)?+ ¢2 is the mean-square value of the in-
fivp=5 cm ~ (wp ~1 ps) [18]. (In polar mediaE, is

. X | tersite coupling. Note that in the given approximation the
much larger[19].) Using the analytic expressiontd4) and  giochastic fluctuations lead only to a renormalization of the
(15) for the total spectral strengii3) it follows that tunneling coupling.

% This approximation can be used to demonstrate the pos-
e G =g=Go 2 lp(x)e” Phwg/2kgT gi(pwg—E 1f)tg— A%%/2. sible inversion and blocking of the transfer reaction that ap-
p=—c pears at nonzero energy biag# 0. To obtain analytic re-
(16)  sults we consider the fornl9) at S<1. In this case the
Go=Scothfiwy/2ksT) is the quantum part of the Debye- terms having a large give only small co_ntributions to the
Waller factor,5= x2/(% wg)? denotes the dimensionless cou- SUM- If we assumeA/Q)>|n..(p)| for all importantp, the
pling strength between the TLS and the specific quantunfSymPptotic form of the Bessel functidia(x) can be used for
mode, andx=Scschfiwy/2ksT) is the argument of the the calculation. We obtain
modified Bessel function(x) of the pth order. Then, in

i . 4(V?) S A n.(pm =
accordance with Eq$12) and(16) we obtain ~ ) o =vr 2
" Kip~ —25-€ 2 IO!cos’- ) > 7|~ @0
—~ o _ _ o
Foac (v) = Fe Gop;w lpi(x)€ Pheo/2keT Let )= wey/2m, wherem is a number large enough to ensure

Q<A. Then, after carrying out the summation we get a
XD, (—E,xeg)lh+pwy+nQ), (170 rather simple form for the effective rate constants
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FIG. 1. (a) Dependence df; and(b) of k; /k, on A/Q) at three different
values of v. The low-temperature limikgT<%Awp,hwy has been con-
sidered in using the following set of parametetg=0.1 eV, wy=0.047
eV, E,=0.006 e\=50 cm !, hwop=5 cm!, #0=0.025 eV,(V)=0.1
cm™l, oy=0.1 cni’l, andS=1. (Note that the ratek; at v=10° s and
»=10'" s practically coincide.

K¢ b~

2
4(V?) A n.(0)m 77} 21

If n,(0)—n_(0)=0Q4,/Q#1 (1=1,2,3...) the forward
rate vanishes at field amplitudes

A=A, =Q|r7+ (22)

n,(0)wr 3=«
2 &)

R4503

whereas the backward rate remains fir(ifee inversion ef-
fecd. If Qy/Q =1, both rates coincide, which is similar to the
case of the isoenergetic transfé2{= 0). Therefore, if the
condition(22) is valid the transfer process in the TLS can be
blocked completely.

Note, however, that the approximatigf9) is indeed a
rather crude one. In particular, it is questionabl€latA and
it is definitely invalid for(3>A. Hence a numerical calcula-
tion is necessary. But before doing this some general conclu-
sions can be drawn. In the present case of interest only con-
tributions to the suni18) with integern and positive integer
p are essential, which, roughly speaking, are the solutions of
the inequality

INQ+pwo+E, 17+ Qg <A.

Let us assume for a moment thiat=0 andv=0. We further
provide that in the absence of the external fiedd=0) there

is such gp* that the above given condition exactly holds for
the forward ratek; and for the given parameteld, and
E,, i.e, p* wp=Q—E, /. This means that without an ex-
ternal field transitions in the TLS take place with the partici-
pation ofp* HB quanta.

Then let us pose the question about the set of external
frequencies() for which a blocking and inversion effect is
possible. For example, it could evidently happen if the con-
dition for A holds for the backward ratk, at p=p* and
0=2Q4/l. Note that the latter condition for the possible
observation of the blocking and inversion is confirmed nu-
merically for a finite spectral linewidtfsee Fig. 1

Finally, we note that the fast stochastic fluctuations tend
to equilibrate the forward and the backward rgEeg. 1(b)]
and to smear out the effects caused by the oscillating field.
This result is intuitively clear since the blocking and inver-
sion effects are especially strong when the energy conserva-
tion condition(inequality forA) holds exactly. The increase
of the jump frequency leads generally to the broadening of
the spectral lined,(x) and hence tends to smear out the
resonances.
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