
Effective transfer rates for a dissipative two-level system driven by regular and stochastic fields

E. G. Petrov and I. A. Goychuk
Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna Street, 252143 Kiev, Ukraine

V. May
Institut für Physik, Humboldt-Universita¨t zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin, Germany

~Received 20 June 1996!

The transfer processes in a two-level system coupled to a thermal bath and driven by strong regular and
stochastic fields are studied. Starting with the master equation for a dissipative quantum system, the derivation
of respective kinetic equations and effective transfer rates is demonstrated. For the low-temperature limit and
the case of a large value of the reorganization energy of the environment it is shown that the action of a strong
periodic field can invert the transfer process or block it completely. Applying an additional stochastic field, a
weakening of this transfer blocking is obtained.@S1063-651X~96!50511-8#

PACS number~s!: 02.50.Ey, 02.50.Wp, 05.20.Dd, 05.60.1w

The dissipative two-level system~TLS! represents a basic
model for the description of various transfer processes ob-
served in crystals and molecular or biomolecular systems.
Recently, considerable interest has been focused on the prob-
lem how to control transitions in the TLS by strong time-
dependent fields. Using the dissipative TLS in the notation of
the spin-boson problem and invoking the noninteracting blip
approximation~NIBA ! @1–8#, it has been demonstrated that a
fast oscillating field can change the transfer rates over orders
of magnitude@4,9–11# and even can invert the transfer di-
rection @10,11#. A similar control may also be initiated by
stochastic fields as it could be shown in@7#.

In the present paper the combined action of an external
regular and stochastic field on the transfer process in a TLS
will be studied. We start with the TLS Hamiltonian in the
standard notation of the spin-boson system@1#

H~ t !5 1
2 «~ t !ŝz1V~ t !ŝx1

1
2 ŝz(
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kl~bl

†1bl!
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\vl~bl
†bl1 1
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wherebl (bl
†) is the boson annihilation~creation! operator

of the heat bath~HB! mode l with frequencyvl , and
ŝz5u1&^1u2u2&^2u and ŝx5u1&^2u1u2&^1u are the pseu-
dospin operators defined by the TLS localized statesu1&
and u2&. In Eq. ~1!, the time-independent quantitykl is
the coupling to the HB, whereas the energy bias
«(t)5E1(t)2E2(t) and the tunneling couplingV(t) depend
on the driving field. To be more concrete we take

«~ t !5«01\AcosVt,

where«0 is the constant energy bias andA andV are the
amplitude and the frequency of the bias oscillations, respec-
tively. The stochastic field should influence the TLS via the
tunneling couplingV(t). We choose this quantity in such a
manner that it randomly switches between two valuesV1 and
V2 with escape frequenciesn1 andn2, respectively@the di-
chotomous Markov process~DMP!#.

To generalize the approach that is based on the NIBA and
which yields a master equation for state population differ-

encesz(t)5tr@r(t)ŝz# @r(t) is the reduced density matrix#
we restrict ourself to the Born approximation with respect to
the ‘‘dressed’’ internal coupling. Proceeding according to
our former approaches@6,7,11#, we obtain the stochastic
master equation

ṡz~ t !52E
0

t

V~ t !V~ t8! f ~ t,t8!sz~ t8!dt8

2E
0

t

V~ t !V~ t8!g~ t,t8!dt8. ~2!

The quantities

f ~ t,t8!5
4

\2 exp@2Gs~ t2t8!#cos@Ga~ t2t8!#

3cosS 1\Et8t «~t!dt D ,
g~ t,t8!5

4

\2 exp@2Gs~ t2t8!#sin@Ga~ t2t8!#

3sinS 1\Et8t «~t!dt D , ~3!

define the regular part of the integral kernels contained in the
master equation. They include the contribution of the HB
and the regular field. The functionG(t)5Gs(t)1 iGa(t) @1#
accounts for the influence of the HB and can be represented
as

G~ t !5E
0

t

dt1E
0

t1
K~ t2!dt21 i

Er

\
t, ~4!

where

K~ t !5
1

2p E
0

`

dvJ~v!
cosh~\v/2kBT2 ivt !

sinh~\v/2kBT!
~5!

is the autocorrelation function of the energy bias fluctuations
caused by the HB. This function, as well as the bath reorga-
nization energy
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includes the spectral density of the bath

J~v!5
2p

\2 (
l

kl
2d~v2vl!. ~7!

The main goal of the present study is to derive the master
equation for the difference of the state populations^s̄z(t)&
averaged with respect to realizations of the random tunneling
couplingV(t) ~which will be denoted bŷ &! and averaged
with respect to the oscillations of the periodic field~indicated
by an overbar!. Similar master equations were derived earlier
either for the case of the periodic field@4,8–11# or for the
case of the DMP@6,7#. The generalization to the combined
action of both types of external fields depends essentially on
the relation between the mean arithmetic escape frequency
n5(n11n2)/2 of the DMP, the frequencyV of the periodic
field, and the reverse relaxation timet r

21 stemming from the
coupling to the HB. Here we restrict ourselves to the rather
important frequency regionV@n@t r

21 only. In this case,
the first step of the averaging procedure is related to the
averaging with respect to the fast oscillations of the periodic
field. In line with the treatment of@4,6–9,11# we obtain

d

dt
s̄z~ t !52E
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t

V~ t !V~ t8! f̄ ~ t2t8!s̄z~ t8!dt8
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V~ t !V~ t8!ḡ~ t2t8!dt8. ~8!

The functions
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containV0[«0 /\ and the Bessel functionJn(z) of the first
kind, which describes the influence of multiphoton processes
on the transfer reaction. SinceV(t) and s̄z(t) of Eq. ~8! are
random quantities, the noise averaging of Eq.~8! has to be
carried out in the next step.~In the case of a symmetric DMP
the noise averaging is possible in an exact manner
@6,7,12,13#.! Below we apply the standard decoupling

^V~ t !V~ t8!s̄z~ t8!&5^V~ t !V~ t8!&^s̄z~ t8!&,

which is valid at small Kubo numbersKj[Vj /n\!1
@14,15#. Furthermore, we can use the exact relation
^V(t)V(t8)&5sV

2exp(2nut2t8u)1^V&2, where

sV
25n1n2~V12V2!

2/4n2

and

^V&5~V1n21V2n1!/2n

are the root-mean-square deviation and the noise-averaged
internal coupling, respectively. Proceeding in such a way, we
get from Eq.~8! the completely averaged master equation

d

dt
^s̄z~ t !&52E

0

t

$^V&21sV
2exp@2n~ t2t8!# f̄ ~ t2t8!%

3^s̄z~ t8!&dt8

2E
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$^V&21sV
2exp@2n~ t2t8# !%

3ḡ~ t2t8!dt8. ~10!

This equation forms the desired basis for the study of aver-
aged transfer processes in a TLS. The contained memory
effects are of minor importance if the decay timetd of these
functions is rather small compared to the relaxation time
t r . Then, on the time scaleDt;t r@td, the upper limit in
the integrals of Eq.~10! can be replaced bỳ and Eq.~10!
reduces to the balance equations

Ṗ1~ t !52kfP1~ t !1kbP2~ t !,

Ṗ2~ t !52kbP2~ t !1kfP1~ t !

for the averaged populationsP1(t)5@11^s̄z(t)&#/2 and
P2(t)5@12^s̄z(t)&#/2. The forwardkf and backwardkb ef-
fective transfer rates read

kf ,b5 (
n52`

`

Jn
2S AV D @^V&2 f̃ n6~0!1sV

2 f̃ n6~n!#, ~11!

where

f̃ n6~n!5
2

\2ReE
0

`

dtexp@2G~ t !6 i ~V01nV!t2nt#. ~12!

The expression~11! of the rate constants enables us to
calculate the total effective transfer rate

k5kf1kb

as well as the steady-state populations

P1,2
s 5kb, f /~kf1kb!.

It is necessary to note that the ratio of the steady-state popu-
lations does not coincide with the conventional Boltzmann
form exp@2(«0 /kBT)# of thermal equilibrium obtained at a
small tunneling coupling. Both types of external fields drive
the quantum system out of the thermal equilibrium. This ef-
fect can be characterized by means of the effective energy
gap«eff introduced via the expression

P1
s/P2

s5exp~2«eff/kBT!,

which results in

«eff5kBTln~kf /kb!.

For a further quantitative analysis of the transfer processes it
is necessary to specify the functionG(t) defined in Eq.~4!
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and, respectively, the spectral densityJ(v) @2,16,17#. Here
we restrict ourselves to the model where the TLS is coupled
to a set of low-frequency modes and a single quantum mode
of the environment. Thus we have

J~v!5JLF~v!1Jquant~v!.

The first contribution

JLF~v!5
2pEr

\vD
vQ~vD2v! ~13!

reflects the Ohmic form of the spectral density with an
abrupt cutoff at the Debye cutoff frequencyvD @2#. Q(x) is
the unit step function andEr denotes the part of the reorga-
nization energy~6!, which corresponds to the low-frequency
vibrations. The second contribution

Jquant~v!5
2pk0

2

\2 d~v2v0! ~14!

describes the strong coupling~with coupling strengthk0) to
the specific high-frequency quantum mode of the environ-
ment ~or to an intramolecular reaction coordinate! with fre-
quencyv0.

The analytical evaluation of the low-frequency~LF! part
of the spectral density~13! is possible in the short-time ap-
proximation when

KLF~ t !'KLF~0!5D25E
0

`

dvJLF~v!coth~\v/2kBT!/2p.

~15!

Since the oscillatory decay ofKLF(t) is exclusively defined
by the Debye cutoff frequencyvD, the justification of Eq.
~15! follows directly from the conditionD@vD . The as-
ymptotic relationsD2'2ErkBT/\

2 andD2'ErvD/2\, valid
at high temperatures (kBT@\vD) and low temperature
(kBT!\vD), respectively, show clearly that the inequality
D@vD is definitely fulfilled in the case of a high reorgani-
zation energy whenEr@\vD . Such an inequality is typical
for molecular systems embedded in nonpolar media
and we may stress that the short-time approximation
~15! can be used at any temperature. To present an
estimation we will take below Er550 cm21 and
\vD55 cm21 (vD

21;1 ps) @18#. ~In polar mediaEr is
much larger@19#.! Using the analytic expressions~14! and
~15! for the total spectral strength~13! it follows that

e2G~ t !5e2G0 (
p52`

`

I upu~x!e2 p\v0/2kBTei ~pv02Er /\!te2 D2t2/2.

~16!

G05Scoth(\v0/2kBT) is the quantum part of the Debye-
Waller factor,S5k0

2/(\v0)
2 denotes the dimensionless cou-

pling strength between the TLS and the specific quantum
mode, andx5Scsch(\v0/2kBT) is the argument of the
modified Bessel functionI p(x) of the pth order. Then, in
accordance with Eqs.~12! and ~16! we obtain

f̃ n6~n!5
2p

\2 e
2G0 (

p52`

`

I upu~x!e2 p\v0/2kBT

3Fn„~2Er6«0!/\1pv01nV…, ~17!

where Fn(x)5Re@w„(x1 in)/A2D…#/A2pD. Here w(z)
5exp(2z2)erfc(2 iz) denotes the error function of a com-
plex variable and erfc(z) is the complementary error func-
tion. At n5 0 and in the high-temperature limitkBT
@\vD, the line shape is Gaussian, i.e.,F0(x)
5exp@2(\x)2/4ErkBT#/A4pErkBT and we obtain the result
derived previously in@4,9–11#. The width of the line shape
function is given by the low-frequency part of the HB spec-
tral density and the stochastic fluctuations of the tunneling
coupling. It is finite even atT50, which reflects the
quantum-mechanical nature of the HB. IfnÞ0, Fn(x) has
Lorentzian wings at largex, and if n@D, the Gaussian
form is transformed into a Lorentzian formFn(x)
5n/p(n21x2). Generally, we can state that stochastic fluc-
tuations result in a broadening of the line-shape function.

Let us concentrate on the low-temperature limit to have a
simple example for the alternation of transfer rates by exter-
nal fields. Taking Eqs.~11! and ~17! and carrying out the
limit T→0, one obtains the transfer rates

kf ,b5
A2p

\2D
e2S(

p50

`
Sp

p! (
n52`

`

Jn
2S AV D @^V&2F0~Er /\7V0

1pv01nV!1sV
2Fn~Er /\7V01pv01nV!#, ~18!

which describe a pure tunneling process.
In a first step, let us consider the limit of low-frequency

bias oscillations whereV!D. In this case one can replace the
summation with respect to the indexn in Eq. ~18! by an
integration in consideringn as a continuous number. If one
further assumes thatJn(A/V) is a smooth function ofn in
the vicinity of the maximum of the line-shape function

n6~p![@6V02pv02Er /\#/V,

one can factor outJn6(p)
(A/V) from the integral. The re-

maining integral yields 1/V independentlyonD andn. As a
result, we get

kf ,b'
2p

\2V
^V2&e2S(

p50

`
Sp

p!
Jn6~p!
2 S AV D , ~19!

where^V2&5^V&21sV
2 is the mean-square value of the in-

tersite coupling. Note that in the given approximation the
stochastic fluctuations lead only to a renormalization of the
tunneling coupling.

This approximation can be used to demonstrate the pos-
sible inversion and blocking of the transfer reaction that ap-
pears at nonzero energy bias«0Þ 0. To obtain analytic re-
sults we consider the form~19! at S,1. In this case the
terms having a largep give only small contributions to the
sum. If we assume (A/V)@un6(p)u for all importantp, the
asymptotic form of the Bessel functionJn(x) can be used for
the calculation. We obtain

kf ,b'
4^V2&
\2A

e2S(
p50

`
Sp

p!
cos2F AV 2

n6~p!p

2
2

p

4 G . ~20!

Let V5v0/2m, wherem is a number large enough to ensure
V!D. Then, after carrying out the summation we get a
rather simple form for the effective rate constants
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kf ,b'
4^V2&
\2A

cos2F AV 2
n6~0!p

2
2

p

4 G . ~21!

If n1(0)2n2(0)5V0 /VÞ l ( l51,2,3, . . . ) the forward
rate vanishes at field amplitudes

A[Ar5VF rp1
n1~0!p

2
1
3p

4 G , ~22!

whereas the backward rate remains finite~the inversion ef-
fect!. If V0 /V5 l , both rates coincide, which is similar to the
case of the isoenergetic transfer (V05 0). Therefore, if the
condition~22! is valid the transfer process in the TLS can be
blocked completely.

Note, however, that the approximation~19! is indeed a
rather crude one. In particular, it is questionable atV;D and
it is definitely invalid forV@D. Hence a numerical calcula-
tion is necessary. But before doing this some general conclu-
sions can be drawn. In the present case of interest only con-
tributions to the sum~18! with integern and positive integer
p are essential, which, roughly speaking, are the solutions of
the inequality

unV1pv01Er /\7V0u,D.

Let us assume for a moment thatD50 andn50. We further
provide that in the absence of the external field (A50) there
is such ap* that the above given condition exactly holds for
the forward ratekf and for the given parametersV0 and
Er , i.e, p*v05V02Er /\. This means that without an ex-
ternal field transitions in the TLS take place with the partici-
pation ofp* HB quanta.

Then let us pose the question about the set of external
frequenciesV for which a blocking and inversion effect is
possible. For example, it could evidently happen if the con-
dition for D holds for the backward ratekb at p5p* and
V52V0 / l . Note that the latter condition for the possible
observation of the blocking and inversion is confirmed nu-
merically for a finite spectral linewidth~see Fig. 1!.

Finally, we note that the fast stochastic fluctuations tend
to equilibrate the forward and the backward rate@Fig. 1~b!#
and to smear out the effects caused by the oscillating field.
This result is intuitively clear since the blocking and inver-
sion effects are especially strong when the energy conserva-
tion condition~inequality forD! holds exactly. The increase
of the jump frequencyn leads generally to the broadening of
the spectral lineFn(x) and hence tends to smear out the
resonances.
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FIG. 1. ~a! Dependence ofkf and~b! of kf /kb onA/V at three different
values of n. The low-temperature limitkBT!\vD ,\v0 has been con-
sidered in using the following set of parameters:«050.1 eV,\v050.047
eV, Er50.006 eV'50 cm21, \vD55 cm21, \V50.025 eV, ^V&50.1
cm21, sV50.1 cm21, andS51. ~Note that the rateskf at n5108 s21 and
n51010 s21 practically coincide.!
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